博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速...
阅读量:6718 次
发布时间:2019-06-25

本文共 11327 字,大约阅读时间需要 37 分钟。

时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速

作者

digoal

日期

2016-11-28

标签

PostgreSQL , 数据合并 , 时序数据 , 复合索引 , 窗口查询


背景

在很多场景中,都会有数据合并的需求。

例如记录了表的变更明细(insert,update,delete),需要合并明细,从明细中快速取到每个PK的最新值。

又比如有很多传感器,不断的在上报数据,要快速的取出每个传感器的最新状态。

对于这种需求,可以使用窗口查询,但是如何加速,如何快速的取出批量数据呢?

这个是有优化的门道的。

传感器例子

假设传感器数据不断的上报,用户需要查询当前最新的,每个传感器上报的值。

创建测试表如下,

create unlogged table sort_test(  id serial8 primary key,  -- 主键  c2 int,  -- 传感器ID  c3 int  -- 传感器值);     写入1000万传感器测试数据postgres=# insert into sort_test (c2,c3) select random()*100000, random()*100 from generate_series(1,10000000);INSERT 0 10000000

查询语句如下

postgres=# explain (analyze,verbose,timing,costs,buffers) select id,c2,c3 from (select id,c2,c3,row_number() over(partition by c2 order by id desc) rn from sort_test) t where rn=1;                                                                            QUERY PLAN                                                                            ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Subquery Scan on t  (cost=10001512045.83..10001837045.83 rows=50000 width=16) (actual time=23865.363..44033.984 rows=100001 loops=1)   Output: t.id, t.c2, t.c3   Filter: (t.rn = 1)   Rows Removed by Filter: 9899999   Buffers: shared hit=54055, temp read=93801 written=93801   ->  WindowAgg  (cost=10001512045.83..10001712045.83 rows=10000000 width=24) (actual time=23865.351..41708.460 rows=10000000 loops=1)         Output: sort_test.id, sort_test.c2, sort_test.c3, row_number() OVER (?)         Buffers: shared hit=54055, temp read=93801 written=93801         ->  Sort  (cost=10001512045.83..10001537045.83 rows=10000000 width=16) (actual time=23865.335..31540.089 rows=10000000 loops=1)               Output: sort_test.id, sort_test.c2, sort_test.c3               Sort Key: sort_test.c2, sort_test.id DESC               Sort Method: external merge  Disk: 254208kB               Buffers: shared hit=54055, temp read=93801 written=93801               ->  Seq Scan on public.sort_test  (cost=10000000000.00..10000154055.00 rows=10000000 width=16) (actual time=0.021..1829.135 rows=10000000 loops=1)                     Output: sort_test.id, sort_test.c2, sort_test.c3                     Buffers: shared hit=54055 Planning time: 0.194 ms Execution time: 44110.560 ms(18 rows)

优化手段,新增复合索引,避免SORT,注意,id需要desc

postgres=# create index sort_test_1 on sort_test(c2,id desc); CREATE INDEX

优化后的SQL性能

postgres=# explain (analyze,verbose,timing,costs,buffers) select id,c2,c3 from (select id,c2,c3,row_number() over(partition by c2 order by id desc) rn from sort_test) t where rn=1;                                                                            QUERY PLAN                                                                            ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Subquery Scan on t  (cost=0.43..542565.80 rows=50000 width=16) (actual time=0.048..33844.843 rows=100001 loops=1)   Output: t.id, t.c2, t.c3   Filter: (t.rn = 1)   Rows Removed by Filter: 9899999   Buffers: shared hit=10029020 read=1   ->  WindowAgg  (cost=0.43..417564.59 rows=10000097 width=24) (actual time=0.042..30490.662 rows=10000000 loops=1)         Output: sort_test.id, sort_test.c2, sort_test.c3, row_number() OVER (?)         Buffers: shared hit=10029020 read=1         ->  Index Scan using sort_test_1 on public.sort_test  (cost=0.43..242562.89 rows=10000097 width=16) (actual time=0.030..18347.482 rows=10000000 loops=1)               Output: sort_test.id, sort_test.c2, sort_test.c3               Buffers: shared hit=10029020 read=1 Planning time: 0.216 ms Execution time: 33865.321 ms(13 rows)

如果被取出的数据需要后续的处理,可以使用游标,分批获取,因为不需要显示sort,所以分批获取速度很快,从而加快整个的处理速度。

\timingbegin;declare c1 cursor for select id,c2,c3 from (select id,c2,c3,row_number() over(partition by c2 order by id desc) rn from sort_test) t where rn=1;postgres=# fetch 100 from c1;   id    | c2 | c3  ---------+----+----- 9962439 |  0 |  93 9711199 |  1 |  52 9987709 |  2 |  65 9995611 |  3 |  34 9998766 |  4 |  12 9926693 |  5 |  81 .... 9905064 | 98 |  44 9991592 | 99 |  99(100 rows)Time: 31.408 ms  -- 很快就返回

优化前,需要显示SORT,所以使用游标并不能加速,拿到第一条记录是在SORT后的。

drop index sort_test_1;begin;declare c1 cursor for select id,c2,c3 from (select id,c2,c3,row_number() over(partition by c2 order by id desc) rn from sort_test) t where rn=1;postgres=# fetch 100 from c1;....Time: 22524.783 ms  -- sort结束后才开始返回,很慢

增量合并数据同步例子

类似Oracle的物化视图,apply时,对于同一条记录的update并不需要每次update的中间过程都需要执行,只需要执行最后一次的。

因此,也可以利用类似的操作手段,分组取最后一条,

create extension hstore;create unlogged table sort_test1(  id serial8 primary key,  -- 主键  c2 int,  -- 目标表PK  c3 text,  -- insert or update or delete  c4 hstore -- row); create index idx_sort_test1_1 on sort_test1(c2,id desc);select c2,c3,c4 from (select c2,c3,c4,row_number() over(partition by c2 order by id desc) rn from sort_test1) t where rn=1;postgres=# explain select c2,c3,c4 from (select c2,c3,c4,row_number() over(partition by c2 order by id desc) rn from sort_test1) t where rn=1;                                            QUERY PLAN                                             --------------------------------------------------------------------------------------------------- Subquery Scan on t  (cost=0.15..46.25 rows=4 width=68)   Filter: (t.rn = 1)   ->  WindowAgg  (cost=0.15..36.50 rows=780 width=84)         ->  Index Scan using idx_sort_test1_1 on sort_test1  (cost=0.15..22.85 rows=780 width=76)(4 rows)

稀疏列的变态优化方法

我们看到前面的优化手段,其实只是消除了SORT,并没有消除扫描的BLOCK数。

如果分组很少时,即稀疏列,还有一种更变态的优化方法,递归查询。

优化方法与这篇文档类似,

例子

create type r as (c2 int, c3 int);postgres=# explain (analyze,verbose,timing,costs,buffers) with recursive skip as (    (      select (c2,c3)::r as r from sort_test where id in (select id from sort_test where c2 is not null order by c2,id desc limit 1)   )    union all    (      select (      select (c2,c3)::r as r from sort_test where id in (select id from sort_test t where t.c2>(s.r).c2 and t.c2 is not null order by c2,id desc limit 1)     ) from skip s where (s.r).c2 is not null  )    -- 这里的where (s.r).c2 is not null 一定要加, 否则就死循环了. )   select (t.r).c2, (t.r).c3 from skip t where t.* is not null;                                                                                            QUERY PLAN                                                                                           ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ CTE Scan on skip t  (cost=302.97..304.99 rows=100 width=8) (actual time=0.077..4184.770 rows=100001 loops=1)   Output: (t.r).c2, (t.r).c3   Filter: (t.* IS NOT NULL)   Rows Removed by Filter: 1   Buffers: shared hit=800947, temp written=476   CTE skip     ->  Recursive Union  (cost=0.91..302.97 rows=101 width=32) (actual time=0.066..3970.580 rows=100002 loops=1)           Buffers: shared hit=800947           ->  Nested Loop  (cost=0.91..2.95 rows=1 width=32) (actual time=0.064..0.066 rows=1 loops=1)                 Output: ROW(sort_test_1.c2, sort_test_1.c3)::r                 Buffers: shared hit=8                 ->  HashAggregate  (cost=0.47..0.48 rows=1 width=8) (actual time=0.044..0.044 rows=1 loops=1)                       Output: sort_test_2.id                       Group Key: sort_test_2.id                       Buffers: shared hit=4                       ->  Limit  (cost=0.43..0.46 rows=1 width=12) (actual time=0.036..0.036 rows=1 loops=1)                             Output: sort_test_2.id, sort_test_2.c2                             Buffers: shared hit=4                             ->  Index Only Scan using sort_test_1 on public.sort_test sort_test_2  (cost=0.43..267561.43 rows=10000000 width=12) (actual time=0.034..0.034 rows=1 loops=1)                                   Output: sort_test_2.id, sort_test_2.c2                                   Index Cond: (sort_test_2.c2 IS NOT NULL)                                   Heap Fetches: 1                                   Buffers: shared hit=4                 ->  Index Scan using sort_test_pkey on public.sort_test sort_test_1  (cost=0.43..2.45 rows=1 width=16) (actual time=0.011..0.012 rows=1 loops=1)                       Output: sort_test_1.id, sort_test_1.c2, sort_test_1.c3                       Index Cond: (sort_test_1.id = sort_test_2.id)                       Buffers: shared hit=4           ->  WorkTable Scan on skip s  (cost=0.00..29.80 rows=10 width=32) (actual time=0.037..0.038 rows=1 loops=100002)                 Output: (SubPlan 1)                 Filter: ((s.r).c2 IS NOT NULL)                 Rows Removed by Filter: 0                 Buffers: shared hit=800939                 SubPlan 1                   ->  Nested Loop  (cost=0.92..2.96 rows=1 width=32) (actual time=0.034..0.035 rows=1 loops=100001)                         Output: ROW(sort_test.c2, sort_test.c3)::r                         Buffers: shared hit=800939                         ->  HashAggregate  (cost=0.49..0.50 rows=1 width=8) (actual time=0.023..0.023 rows=1 loops=100001)                               Output: t_1.id                               Group Key: t_1.id                               Buffers: shared hit=400401                               ->  Limit  (cost=0.43..0.48 rows=1 width=12) (actual time=0.021..0.021 rows=1 loops=100001)                                     Output: t_1.id, t_1.c2                                     Buffers: shared hit=400401                                     ->  Index Only Scan using sort_test_1 on public.sort_test t_1  (cost=0.43..133557.76 rows=3333333 width=12) (actual time=0.019..0.019 rows=1 loops=100001)                                           Output: t_1.id, t_1.c2                                           Index Cond: ((t_1.c2 > (s.r).c2) AND (t_1.c2 IS NOT NULL))                                           Heap Fetches: 100000                                           Buffers: shared hit=400401                         ->  Index Scan using sort_test_pkey on public.sort_test  (cost=0.43..2.45 rows=1 width=16) (actual time=0.006..0.007 rows=1 loops=100000)                               Output: sort_test.id, sort_test.c2, sort_test.c3                               Index Cond: (sort_test.id = t_1.id)                               Buffers: shared hit=400538 Planning time: 0.970 ms Execution time: 4209.026 ms(54 rows)

依旧支持快速的FETCH

postgres=# begin;BEGINTime: 0.079 mspostgres=# declare cur cursor for with recursive skip as (    (      select (c2,c3)::r as r from sort_test where id in (select id from sort_test where c2 is not null order by c2,id desc limit 1)   )    union all    (      select (      select (c2,c3)::r as r from sort_test where id in (select id from sort_test t where t.c2>(s.r).c2 and t.c2 is not null order by c2,id desc limit 1)     ) from skip s where (s.r).c2 is not null  )    -- 这里的where (s.r).c2 is not null 一定要加, 否则就死循环了. )   select (t.r).c2, (t.r).c3 from skip t where t.* is not null; DECLARE CURSORTime: 1.240 mspostgres=# fetch 100 from cur;    r     ---------- (0,93) (1,52) (2,65).....  (97,78) (98,44) (99,99)(100 rows)Time: 4.314 ms

使用变态的递归优化,性能提升了10倍,仅仅花了4秒,完成了1000万记录的筛选。

转载地址:http://snymo.baihongyu.com/

你可能感兴趣的文章
ABAP OPEN SQL里OPEN CURSOR和SELECT的比较
查看>>
【348天】我爱刷题系列107(2018.01.19)
查看>>
四谈快速排序(含尾递归)
查看>>
WPF 下的自定义控件以及 Grid 中控件的自适应
查看>>
来一场轰轰烈烈的HTTP协议扫盲革命
查看>>
mongodb安装和配置
查看>>
touch事件兼容性处理
查看>>
prerender-spa-plugin 预渲染插件的使用说明
查看>>
前端每周清单第 37 期:Bootstrap 4 必知必会、2017 Vue.js 报告、Graphcool 开源框架...
查看>>
移动端rem布局的学习(基于自己写的一个网易云播放页面的思考)
查看>>
分享一个用于登陆验证的vue组件
查看>>
windows下搭建create-react-app
查看>>
以图表和示例的角度解读async/await
查看>>
解决PHP脚本 MySQL has gone away错误
查看>>
翻译连载 | 附录 A:Transducing(上)-《JavaScript轻量级函数式编程》 |《你不知道的JS》姊妹篇...
查看>>
缓存更新(同步)
查看>>
前端每周清单半年盘点之 CSS 篇
查看>>
PyCharm 设置小计
查看>>
underscorejs
查看>>
Linux网络——GW总结
查看>>